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Introduction 

• Neutrons are uncharged particles  → cannot be directly 
detected 

• Neutrons are generally detected trough nuclear reactions 
with atomic nuclei → emission of charged particles (proton, ®, 
fission fragments,…) that can be detected 

• Neutron reaction cross sections are very energy dependent → 
two energy domains are considered → slow neutrons (E < 0.5 
eV) and fast neutrons (E > 0.5 eV) 

 

 

3 



Slow neutrons 

• Materials used for neutrons detection 

 

• Neutrons sensitive proportional counters 

 

• Neutrons sensitive scintillators 

 

• Neutrons detectors based on fission 

 

• Neutrons detectors for nuclear power plants 
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Slow neutron detection: Choice of materials 

• Cross section of the reaction must be large → efficient detectors 
with reasonable dimensions  

• Generally → intense field of ° rays → discrimination against 
these ° rays must be considered in the material choice 

• Importance of the Q value (liberated energy) → for Q ↗ → 
energy given to the reaction products ↗ → easier is the 
discrimination against the ° rays using amplitude discrimination  

• Distances travelled by the reaction products  has also 
importance (for slow neutrons in solids: a few tenths of mm; in 
gas: several cm) 
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• Boron reaction:  10B(n,®) → 

 
 

• When thermal neutrons (E≈0.025 eV) → 94% to Li* and 6% 
to Li → Q very large → impossible to extract information 
about neutron energy 

• Also  net momentum is zero → for instance for the excited 
state → 

Important reactions for neutron detection (1) 
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Important reactions for neutron detection (2) 

• Lithium reaction 6Li(n,®) → 

 

 

 

• Helium reaction 3He(n,p) → 

 

 

 

• Gadolinium (157Gd) neutron capture (255000 barns) → 
electrons emission 

• Neutron-induced fission reactions (233U, 235U, 239Pu) → large Q 
value (≈ 200 MeV) 
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Cross sections for various reactions (1) 
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Cross sections for various reactions (2) 
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Proportional tubes for neutron detection 

• Generally BF3 gas or 3He gas are used (no gas with Li because stable lithium-
containing gas does not exist) 

• Both have good ° ray discrimination (better for BF3 due its larger Q) ↔ ° 
rays can interact with the walls → production of electrons, but the energy 
loss of electrons in gas is small (≈2keV/cm) → these pulses are much smaller 
that neutron pulses 

• Poor time resolution → time of flight of reaction products 

• BF3 is highly toxic and very corrosive; because slightly electronegative, 
cannot work at pressure > 1 bar → poor chamber gas; significant 
degradation after 1010-1011 counts due to contamination of electrodes by 
molecular dissociation products 

• 3He tubes can work at pressures of several bars → excellent  proportional 
counters; long tube life; very expensive   
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Up to a few years, 3He tube was preferentially used 
but very expensive to manufacture → use of BF3 ↗  



Ideal spectrum for a BF3 counter  

• For large size counter → reaction products are created far from 
the walls and leave all their energy in the counter gas 

• Ratio between the 2 peaks → 94:6 
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Wall effect for BF3 (1) 

• If the size of the detector is similar to the range of ® and Li 
(typical range of ® in BF3: 1 cm) → interactions with the walls of 
the detector 

• A part of the available energy is deposited inside the walls → 
modification of the spectrum → « wall effect » 
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Wall effect for BF3 (2) 

1. The ® and Li atoms are emitted in opposite directions → if the ® 
interacts with a wall (only a part of its energy is deposited - 
uniformly – inside the detector) → the Li atom deposits all its energy 
in the gas → the deposited energy varies between ELi and ELi + E® 

 

 

 

 

2. If conversely the Li interacts with a wall → the ® deposits all its 
energy in the gas → the deposited energy varies between E® and E® 
+ ELi  
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Wall effect for BF3 (3) 

3. If the ® and Li are created « far away » from the walls → no 
escape → total absorption peak at E® + ELi  

 

4. The combination of these ≠ processes gives the final spectrum 
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3He counter 

• Exactly the same principle than for BF3  

• However → smaller Z than BF3 → the ranges of tritium and 
proton are large → wall effect more important at given 
pressure and size 
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Neutron sensitive scintillators (1) 

• Use of Li as scintillator → lithium iodide doped with europium - 
LiI(Eu) → after reaction of neutron with lithium → tritium and ® 
atoms interacts « classically » with the scintillator 

• LiI chemically similar to NaI 

• With 0.1% doping of Eu as activator → intrinsic efficiency ≈ 35% 
of the one of NaI(Tl) 

• The lifetime of the luminescence centers ≈ 0.3 ¹s (for NaI(Tl): ≈ 
0.23 ¹s) → good time resolution  

• Large size crystals → no wall effect → total absorption peak  

• Disadvantage → the scintillating crystal is sensitive to ° rays → 
they deposit all their E → ° discrimination less effective 
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Neutron sensitive scintillators (2) 

• Other scintillating materials exist  

• Li dispersed inside a scintillating matrix of zinc sulfide doped with 
silver - ZnS(Ag) – and with small thickness ≈ 0.6 mm (material only 
available as polycrystal → due to interfaces → auto-absorption of 
its luminescence light → restricted size → only valid for detection 
of heavy particles) → due to small thickness → good 
discrimination against ° 

• B loaded plastics 

• Liquid scintillators containing Li or Gd → discrimination between 
neutrons and ° rays as a function of the pulse shape 

• … 
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Neutron detectors based on fission reactions 

• Fission reactions convert slow neutrons into ionizing reaction 
products that be conventionally detected → 200 MeV energy 
is available → typically about 160 MeV to the fission 
fragments  

• Large deposited energy → negligible background 

• Due to physical/chemical properties that are unfavorable → 
impossible to incorporate fission media inside a gas 

• Solution → gas detector that has its inner surface coated with 
fissile medium 
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Ionization chamber with fissile coating 

• Most popular detector → « classical » ionization chamber that 
has its inner surface coated with fissile medium → possibility to 
use it in current or pulse mode 

• In pulse mode → the measured spectrum depends on the 
thickness of fissile coating  

• Roughly → light and heavy fragments have distributions 
centered at 100 MeV and 70 MeV 

• For a thin fissile coating → we well observe a characteristic 
spectrum with double humps at 70 and 100 MeV 

• For a large fissile coating → ↗ of the detection efficiency but 
energy absorption inside the coating itself → distorsion of the 
spectrum 
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Ionization chamber with UO2 coating 
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Other detectors based on fission reaction  

• Proportional counter that has its inner surface coated with 
fissile medium (235U or 239Pu) → 235U or 239Pu lined proportional 
tubes 

 

• Remark → with 238U or 237Np → measure of fast neutrons 

 

• Scintillators containing fissile material 
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Fission cross sections 

22 



Neutron detectors for nuclear reactors (1) 

• In thermal nuclear reactors → fission induced by slow neutrons → 
reactor control and safety system generally based on slow neutrons 
detection 

• Extreme conditions → specifically designed detectors 

• Majority of neutron sensors are gas-filled type → advantages: °–ray 
discrimination, long-term stability, resistance to radiation damage 

• Scintillation detectors are less suitable: high °–ray sensitivity and 
spurious events induced in the photomultiplier 

• Semiconductors are very sensitive to radiation damage → never used 
in reactor environment 
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Neutron detectors for nuclear reactors (2) 

• Two categories of detectors as a function of fluxes ranges 

• In-core detectors (fluxes in 104-1014 cm-2s-1 range) and out-of-core 
detectors (0-1010 cm-2s-1) 

• Out-of-core detectors are used outside the PWR core 

 

 

 

 

• In-core detectors are used inside the core of BWR and PWR 
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Out-of-core detectors 

• Gas detectors as previously explained may be used as out-of-
core detectors  

• The pulse mode is limited to rates of 107 events per second → 
for higher fluxes (full operation reactor) → the current mode is 
used → problem: no ° discrimination 

• Another possibility: the use of the fluctuation mode → signal /                 
→     → allows discrimination 

• Another solution → use compensated ion chamber 
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compensated ion chamber (CIC) 

• We consider first → an ionization chamber with the inner 
surface is coated with boron operating in current mode → the 
measured current (I1) is the addition of the current due to 
interactions of neutrons in le B and to ° in the walls and in the 
gas 

• Second we measure the I2 current in a « normal » chamber and 
thus due to interactions of ° rays in the walls and in the gas 

• The ≠ of these 2 currents gives the current only due to 
neutrons  
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Example of in-core ionization chamber 
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• Typical fission chamber with 235U 
used in BWR neutron monitoring 
system 
• Use in current mode 
• Argon at high pressure → the 
range of the fission products < the 
size of the chamber 
• Fissile material is consumed → 
reduction of sensitivity (after 1 
year: reduction of 50%)  
• To compensate this effect → use 
of a mixture of  fissile and fertile 
isotopes (238U and 239Pu) or (234U 
and 235U) 



In-core detectors : Self-powered detectors (1)   

• This detector incorporates material with high cross section for 
neutron capture leading to subsequent ¯ or ° emission  

• If ¯ emission → the e- current is directly measured (without 
bias voltage → self-powered detector) → current / to the 
neutrons capture rate 

• If ° emission → ° rays interact by photoelectric, Compton or 
pair creation effect → creation of secondaries e- → current  

• ≠ names exist → detector of Hilborn (inventor in 1964), ¯ 
emission detector, collectron, PENA detector (« Primary 
Emission, Neutron Activation ») 
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In-core detectors : Self-powered detectors (2)  

• Advantages of self-powered detectors → small size, small cost and 
simple lower down electronics 

• Disadvantages → small output current, obligatory use in current 
mode, slow time response 

• For direct emission of ¯ → we choose material with a cross section of 
electronic capture not too small (to avoid a too weak sensitivity) and 
not too large (to avoid a too quick consumption of the matertial), 
with high energy ¯ (to avoid auto-absorption inside the material) and 
with a life time of the activated isotope weaker as possible (to reach a 
fast response) → rhodium or vanadium (that is generally chosen 
because of its slow consumption) 

• For the emission of e- via ° rays→ use of 59Co (¾cap = 37 barn) → 
faster signal but weaker sensitivity than for a direct ¯ emission 
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In-core detectors : Self-powered detectors (3)  
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In-core detectors : Self-powered detectors (4)  

Disintegration of 52V and 104Rh 
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Fast neutron detection 

1. Detection after moderation 

 

 

 

2. Detection based on fast neutrons reactions and neutron 
spectroscopy 
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Detection after moderation (1) 

• The detector is surrounded by moderator → few centimeters 
of hydrogen-containing material (generally polyethylene or 
paraffin) 

• Neutron loses important fraction of its kinetic energy before 
reaching the detector sensitive to slow neutrons (see before) 

• The optimum thickness of moderator depends on the energy 
of the neutrons flux → 
- For small energy neutrons (keV) → if the moderator is too thick → 

absorption of the thermalized neutrons inside the moderator → signal 
loss   

- For high energy neutrons (MeV) → if the moderator is too thin → 
neutrons are not enough slowing down → are not detected 

- For neutrons with energy > 10 MeV → the detector response strongly 
↘ → difficult to use it on this form 
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Detection after moderation (2) 

1. Moderated and detected 
neutrons 

2. Neutrons partially moderated 
→ escape without reaching 
detector 

3. Neutrons absorbed in the 
moderator 

 

 Size of the moderator is 
important: 

 Size ↗ → ↘ of process 2 but 
↗ of process 3 
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Bonner sphere (1) 

• Spherical detector composed of a small LiI scintillator at the  
center of a moderator sphere made in polyethylene 

• As a function of the detector size → the response varies 
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Sphère de Bonner (2) 

• For a sphere with 12 inches diameter → the response curve for this 
configuration has a very similar shape compared with the dose 
equivalent (thus in a biological medium) per neutrons as a function of 
energy → coincidence but very useful 

 

 

 

 

 

 

• The efficiency of the detector is large for neutrons with a large 
biological importance and small for neutrons with small importance 
→ biological weighting automatically include 
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Example of Bonner sphere 

Fuji Electric NSN10014 neutron dosimeter 
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Long counter (1) 

 Detection efficiency more or less independent from the 
neutron energy by choosing a right geometry → only 
sensitive for neutrons incident on the right-hand face 
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neutrons 

Neutrons k to the axis penetrate some 
distance before moderation → 
distance ↗ when E↗ → if tube long 
enough → counting rate independent 
on the neutron E ↔ some moderated 
neutrons will arrive to the counter 

Neutrons not k  are moderated in the outer annulus of paraffin 
→ subsequently captured in the B2O3 → no count 



Long counter (2) 

 Parameter: displacement of the detector in relation to the 
entrance surface 
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Fast neutron detection (E>10 MeV) 

 The insertion of a heavy metal layer (tungsten) in the 
moderator extends the response function to GeV because of 
nuclear reactions of high energy neutrons in the layer 
(reaction (n,2n)) → Wendi-II detector 
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FHT 762 Wendi-II from Thermo Fisher Scientific 



Reaction (n,2n) for the tungsten (184W) 
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http://www.nndc.bnl.gov/exfor/endf00.jsp 



Response of Wendi-II  
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Neutrons detectors with diodes (1) 

• Neutrons detectors based on the used of 2 diodes 

• Diode 1 (called neutron diode): covered with an organic 
medium (plastic: PE,…) doped with 10B (≈ 1013/cm3 B atoms) → 
sensitive to neutrons and ° 

• Diode 2 (called ° diode): “nude” → no sensitive to neutrons 
and sensitive to ° 

• The 2 diodes are side by side and ? to ionizing  radiations 
(neutrons + °) 
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Neutrons detectors with diodes (2) 

• Thermal n interact with 1 in 2 ways → 
1. H(n,n)p → emission of protons 

2. 10B(n,®)7Li → emission of ® 

• The ≠ between signals from diodes 1 et 2 allows to discriminate the 
contribution due ° from the contribution due to neutrons 
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a) Diode 1 
b) Diode 2  

Measured spectrum 

Pic ® 



Neutrons detectors with diodes (3) 

• If the size of the plastic coating is large → important 
moderation of high energy neutrons → it is possible to study 
neutrons with high E  

• The quantity of 10B is chosen to obtain a response to thermal 
neutrons equal to the response to fast neutrons  
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Neutrons detectors with diodes (4) 

• For very high E (E > 10 MEV) → addition of Pb → reaction (n,2n)  

 

• To improve the precision for a large range of E → system with 3 
or 4 diodes with ≠ coatings → multi-elements detector 
(Saphydose detector) 
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Saphydose Detector of Saphymo 



Detection based on fast neutrons reactions (1) 

• Problems for detectors based on moderation → no information on 
neutrons energy and detection process slow (thermalization by 
multiple collisions then diffusion of thermal neutrons) 

• Solution → direct use of nuclear reactions for fast neutrons → 
charged reactions products → detection 

• Kinetic energy of the reaction product = Q + incident neutron kinetic 
energy (En) → if En  À Q → we obtain neutron energy  

• Advantage: fast detection process 

• Disadvantage: weak cross sections → small efficiency 
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Detection based on fast neutrons reactions (2) 

• Two « types » of detectors based on fast neutrons reactions → 

 

1. Use of reactions 6Li(n,®) or 3He(n,p) → same detectors as 
previously for which the ® or proton energy have to be 
precisely measured 

 

2. Use of the elastic diffusion reaction → measure of the recoil 
energy of the nucleus implied in neutron-nucleus reaction 
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Detectors based on the elastic diffusion 

• To maximize energy transfer → diffusion with light elements → 
hydrogen, deuterium, helium  

• Hydrogen is very popular → recoil proton → detector called 
“recoil proton detector“ 

• Elastic diffusion → Q = 0 → the energy of the recoil proton can 
be equal to the energy of the incident neutron 

• Practically →  
– Organic scintillators  

– Proportional counter 

– recoil proton telescope 
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Organic scintillators for neutrons detection (1) 

• Organic scintillators contain hydrogen → large possible 
selection → use for instance of stilbene allowing a good ° 

discrimination 

• In first approximation → all energies given to the proton are 
equiprobable  (in reality → Tc = Ecos2 µr) → the measured 
energy spectrum of the protons is considered as rectangular 
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E of the neutron 



Organic scintillators for neutrons detection (2) 

• Deviations in comparison with a rectangular spectrum:  
– Non-linearity of the light response of the scintillator 

– Wall effect if the scintillator is small in comparison to the protons range 

– Multiple scattering for the incident neutron if the scintillator is not small 

– Scattering with the carbon of the scintillator → a neutron can lose 0-28 
% of its E due to an elastic scattering with C → direct effect is weak due 
to the bad response of scintillator for large dE/dx but neutron having a 
collision with C and having afterwards a collision with H has an E that is 
only 72-100 % of its initial E 

– Resolution of the detector (photoelectrons statistics,…) 
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Organic scintillators for neutrons detection (3) 
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Proportional counters for neutrons detection 

• Proportional counters  containing hydrogen, a gas rich in 
hydrogen as methane (CH4) or helium 

• Gas → small density → small efficiency 

• Wall effect is important 

• The purity of the gas is very important → if impurity → can 
reach to large deviations 

• Use less convenient than scintillators 
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Recoil proton telescope 

• Monoenergy  incident  neutrons are scattered in a thin film (< 
than the protons range) rich in H 

• As Tc = Ecos2 µr → precise energy for the proton at a given angle 
→ energy peak 

• Extremely small efficiency (1 event for 105 neutrons)   
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