Chapter 11: Neutrons detectors

Contents

- Principles of neutrons detection
- Slow neutron detection methods
- Fast neutron detection methods

Introduction

- Neutrons are uncharged particles → cannot be directly detected
- Neutrons are generally detected trough nuclear reactions with atomic nuclei → emission of charged particles (proton, α, fission fragments,...) that can be detected
- Neutron reaction cross sections are very energy dependent → two energy domains are considered → slow neutrons (E < 0.5 eV) and fast neutrons (E > 0.5 eV)

Slow neutrons

- Materials used for neutrons detection
- Neutrons sensitive proportional counters
- Neutrons sensitive scintillators
- Neutrons detectors based on fission
- Neutrons detectors for nuclear power plants

Slow neutron detection: Choice of materials

- Cross section of the reaction must be large → efficient detectors with reasonable dimensions
- Generally \rightarrow intense field of γ rays \rightarrow discrimination against these γ rays must be considered in the material choice
- Importance of the Q value (liberated energy) → for Q ↗ → energy given to the reaction products ↗ → easier is the discrimination against the γ rays using amplitude discrimination
- Distances travelled by the reaction products has also importance (for slow neutrons in solids: a few tenths of mm; in gas: several cm)

Important reactions for neutron detection (1)

• Boron reaction: ${}^{10}B(n,\alpha) \rightarrow$

 ${}_{5}^{10}B + {}_{0}^{1}n \to \begin{cases} {}_{3}^{7}Li + {}_{2}^{4}\alpha & Q = 2.792 \text{ MeV (ground state)} \\ {}_{3}^{7}Li^{*} + {}_{2}^{4}\alpha & Q = 2.310 \text{ MeV (excited state)} \end{cases}$

- When thermal neutrons ($E \approx 0.025 \text{ eV}$) $\rightarrow 94\%$ to Li* and 6% to Li \rightarrow Q very large \rightarrow impossible to extract information about neutron energy
- Also net momentum is zero \rightarrow for instance for the excited state $\rightarrow E_{Li} + E_{\alpha} = Q$

$$m_{Li}v_{Li} = m_{\alpha}v_{\alpha}$$

 $E_{Li} = 0.84 \text{ MeV}$ and $E_{\alpha} = 1.47 \text{ MeV}$

Important reactions for neutron detection (2)

• Lithium reaction ⁶Li(n, α) \rightarrow

$$E_{3}^{6}Li + {}^{1}_{0}n \rightarrow {}^{3}_{1}H + {}^{4}_{2}\alpha \qquad Q = 4.78 \text{ MeV}$$

 $E_{H} = 2.73 \text{ MeV} \quad \text{and} \quad E_{\alpha} = 2.05 \text{ MeV}$

• Helium reaction ${}^{3}\text{He}(n,p) \rightarrow$

³₂
$$He + {}^{1}_{0}n \rightarrow {}^{3}_{1}H + {}^{1}_{1}p \quad Q = 0.764 \text{ MeV}$$

 $E_{p} = 0.573 \text{ MeV} \text{ and } E_{H} = 0.191 \text{ MeV}$

- Gadolinium (¹⁵⁷Gd) neutron capture (255000 barns) → electrons emission
- Neutron-induced fission reactions (²³³U, ²³⁵U, ²³⁹Pu) → large Q value (≈ 200 MeV)

8

Proportional tubes for neutron detection

- Generally BF₃ gas or ³He gas are used (no gas with Li because stable lithiumcontaining gas does not exist)
- Both have good γ ray discrimination (better for BF₃ due its larger Q) ↔ γ rays can interact with the walls → production of electrons, but the energy loss of electrons in gas is small (≈2keV/cm) → these pulses are much smaller that neutron pulses
- Poor time resolution \rightarrow time of flight of reaction products
- BF₃ is highly toxic and very corrosive; because slightly electronegative, cannot work at pressure > 1 bar → poor chamber gas; significant degradation after 10¹⁰-10¹¹ counts due to contamination of electrodes by molecular dissociation products
- ³He tubes can work at pressures of several bars → excellent proportional counters; long tube life; very expensive

Up to a few years, ³He tube was preferentially used but very expensive to manufacture \rightarrow use of BF₃ \nearrow

Ideal spectrum for a BF₃ counter

- For large size counter → reaction products are created far from the walls and leave all their energy in the counter gas
- Ratio between the 2 peaks \rightarrow 94:6

Wall effect for BF_3 (1)

- If the size of the detector is similar to the range of α and Li (typical range of α in BF₃: 1 cm) → interactions with the walls of the detector
- A part of the available energy is deposited inside the walls → modification of the spectrum → « wall effect »

Wall effect for BF_3 (2)

1. The α and Li atoms are emitted in opposite directions \rightarrow if the α interacts with a wall (only a part of its energy is deposited uniformly – inside the detector) \rightarrow the Li atom deposits all its energy in the gas \rightarrow the deposited energy varies between E_{Li} and $E_{Li} + E_{\alpha}$

2. If conversely the Li interacts with a wall \rightarrow the α deposits all its energy in the gas \rightarrow the deposited energy varies between E_{α} and E_{α} + E_{Li} $\stackrel{\text{div}}{\stackrel{\text{div}}{\stackrel{\text{div}}{\stackrel{\text{div}}{\stackrel{\text{div}}{\stackrel{\text{case 2}}{n}}}}$

Wall effect for $BF_3(3)$

- 3. If the α and Li are created « far away » from the walls \rightarrow no escape \rightarrow total absorption peak at $E_{\alpha} + E_{Li}$
- 4. The combination of these ≠ processes gives the final spectrum

³He counter

- Exactly the same principle than for BF₃
- However → smaller Z than BF₃ → the ranges of tritium and proton are large → wall effect more important at given pressure and size

Neutron sensitive scintillators (1)

- Use of Li as scintillator → lithium iodide doped with europium -Lil(Eu) → after reaction of neutron with lithium → tritium and α atoms interacts « classically » with the scintillator
- Lil chemically similar to Nal
- With 0.1% doping of Eu as activator → intrinsic efficiency ≈ 35% of the one of NaI(TI)
- The lifetime of the luminescence centers ≈ 0.3 µs (for Nal(Tl): ≈ 0.23 µs) → good time resolution
- Large size crystals \rightarrow no wall effect \rightarrow total absorption peak
- Disadvantage \rightarrow the scintillating crystal is sensitive to γ rays \rightarrow they deposit all their $E \rightarrow \gamma$ discrimination less effective

Neutron sensitive scintillators (2)

- Other scintillating materials exist
- Li dispersed inside a scintillating matrix of zinc sulfide doped with silver - ZnS(Ag) – and with small thickness ≈ 0.6 mm (material only available as polycrystal → due to interfaces → auto-absorption of its luminescence light → restricted size → only valid for detection of heavy particles) → due to small thickness → good discrimination against γ
- B loaded plastics
- Liquid scintillators containing Li or Gd \rightarrow discrimination between neutrons and γ rays as a function of the pulse shape

Neutron detectors based on fission reactions

- Fission reactions convert slow neutrons into ionizing reaction products that be conventionally detected → 200 MeV energy is available → typically about 160 MeV to the fission fragments
- Large deposited energy \rightarrow negligible background
- Due to physical/chemical properties that are unfavorable → impossible to incorporate fission media inside a gas
- Solution → gas detector that has its inner surface coated with fissile medium

Ionization chamber with fissile coating

- Most popular detector → « classical » ionization chamber that has its inner surface coated with fissile medium → possibility to use it in current or pulse mode
- In pulse mode → the measured spectrum depends on the thickness of fissile coating
- Roughly → light and heavy fragments have distributions centered at 100 MeV and 70 MeV
- For a thin fissile coating → we well observe a characteristic spectrum with double humps at 70 and 100 MeV
- For a large fissile coating → ↗ of the detection efficiency but energy absorption inside the coating itself → distorsion of the spectrum

Ionization chamber with UO₂ coating

Other detectors based on fission reaction

- Proportional counter that has its inner surface coated with fissile medium (²³⁵U or ²³⁹Pu) → ²³⁵U or ²³⁹Pu lined proportional tubes
- Remark \rightarrow with ²³⁸U or ²³⁷Np \rightarrow measure of fast neutrons
- Scintillators containing fissile material

Fission cross sections

Neutron detectors for nuclear reactors (1)

- In thermal nuclear reactors → fission induced by slow neutrons → reactor control and safety system generally based on slow neutrons detection
- Extreme conditions \rightarrow specifically designed detectors
- Majority of neutron sensors are gas-filled type \rightarrow advantages: γ -ray discrimination, long-term stability, resistance to radiation damage
- Scintillation detectors are less suitable: high γ -ray sensitivity and spurious events induced in the photomultiplier
- Semiconductors are very sensitive to radiation damage → never used in reactor environment

Neutron detectors for nuclear reactors (2)

- Two categories of detectors as a function of fluxes ranges
- In-core detectors (fluxes in 10⁴-10¹⁴ cm⁻²s⁻¹ range) and out-of-core detectors (0-10¹⁰ cm⁻²s⁻¹)
- Out-of-core detectors are used outside the PWR core

• In-core detectors are used inside the core of BWR and PWR

Out-of-core detectors

- Gas detectors as previously explained may be used as out-ofcore detectors
- The pulse mode is limited to rates of 10⁷ events per second \rightarrow for higher fluxes (full operation reactor) \rightarrow the current mode is used \rightarrow problem: no γ discrimination
- Another possibility: the use of the fluctuation mode \rightarrow signal $\propto \overline{\sigma_I^2(t)} \rightarrow$ allows discrimination
- Another solution \rightarrow use compensated ion chamber

compensated ion chamber (CIC)

- We consider first → an ionization chamber with the inner surface is coated with boron operating in current mode → the measured current (I₁) is the addition of the current due to interactions of neutrons in le B and to γ in the walls and in the gas
- Second we measure the I₂ current in a « normal » chamber and thus due to interactions of γ rays in the walls and in the gas
- The ≠ of these 2 currents gives the current only due to neutrons

Example of in-core ionization chamber

- Typical fission chamber with ²³⁵U used in BWR neutron monitoring system
- Use in current mode
- Argon at high pressure → the range of the fission products < the size of the chamber
- Fissile material is consumed → reduction of sensitivity (after 1 year: reduction of 50%)
- To compensate this effect → use of a mixture of fissile and fertile isotopes (²³⁸U and ²³⁹Pu) or (²³⁴U and ²³⁵U)

In-core detectors : Self-powered detectors (1)

- This detector incorporates material with high cross section for neutron capture leading to subsequent β or γ emission
- If β emission → the e⁻ current is directly measured (without bias voltage → self-powered detector) → current ∝ to the neutrons capture rate
- If γ emission → γ rays interact by photoelectric, Compton or pair creation effect → creation of secondaries e⁻ → current
- ≠ names exist → detector of Hilborn (inventor in 1964), β emission detector, collectron, PENA detector (« Primary Emission, Neutron Activation »)

In-core detectors : Self-powered detectors (2)

- Advantages of self-powered detectors → small size, small cost and simple lower down electronics
- Disadvantages → small output current, obligatory use in current mode, slow time response
- For direct emission of β → we choose material with a cross section of electronic capture not too small (to avoid a too weak sensitivity) and not too large (to avoid a too quick consumption of the material), with high energy β (to avoid auto-absorption inside the material) and with a life time of the activated isotope weaker as possible (to reach a fast response) → rhodium or vanadium (that is generally chosen because of its slow consumption)
- For the emission of e^{-} via γ rays \rightarrow use of ⁵⁹Co (σ_{cap} = 37 barn) \rightarrow faster signal but weaker sensitivity than for a direct β emission

In-core detectors : Self-powered detectors (3)

Emitter		σ thermal neutrons [barns]	T 1/2 [s]	beta end point energy [MeV]	Typical sensitivity A/(n/cm ² .s)
Vanadium	⁵¹ 23V	4.9	225	2.47	5 10-23
Rhodium	¹⁰³ 45Rh	139	44	2.44	2.44 10-21
		11	265		

In-core detectors : Self-powered detectors (4)

Disintegration of ⁵²V and ¹⁰⁴Rh

Fast neutron detection

1. Detection after moderation

2. Detection based on fast neutrons reactions and neutron spectroscopy

Detection after moderation (1)

- The detector is surrounded by moderator → few centimeters of hydrogen-containing material (generally polyethylene or paraffin)
- Neutron loses important fraction of its kinetic energy before reaching the detector sensitive to slow neutrons (see before)
- The optimum thickness of moderator depends on the energy of the neutrons flux →
 - For small energy neutrons (keV) → if the moderator is too thick → absorption of the thermalized neutrons inside the moderator → signal loss
 - For high energy neutrons (MeV) \rightarrow if the moderator is too thin \rightarrow neutrons are not enough slowing down \rightarrow are not detected
 - For neutrons with energy > 10 MeV \rightarrow the detector response strongly $\searrow \rightarrow$ difficult to use it on this form

Detection after moderation (2)

- Moderated and detected neutrons
- Neutrons partially moderated
 → escape without reaching
 detector
- Neutrons absorbed in the moderator

Size of the moderator is important: Size $\nearrow \rightarrow \searrow$ of process 2 but \nearrow of process 3

Bonner sphere (1)

- Spherical detector composed of a small Lil scintillator at the center of a moderator sphere made in polyethylene
- As a function of the detector size \rightarrow the response varies

Sphère de Bonner (2)

For a sphere with 12 inches diameter → the response curve for this configuration has a very similar shape compared with the dose equivalent (thus in a biological medium) per neutrons as a function of energy → coincidence but very useful

 The efficiency of the detector is large for neutrons with a large biological importance and small for neutrons with small importance
 → biological weighting automatically include

Example of Bonner sphere

Fuji Electric NSN10014 neutron dosimeter

Long counter (1)

Detection efficiency more or less independent from the neutron energy by choosing a right geometry \rightarrow only sensitive for neutrons incident on the right-hand face

Neutrons // to the axis penetrate some distance before moderation \rightarrow distance \nearrow when $E \nearrow \rightarrow$ if tube long enough \rightarrow counting rate independent on the neutron $E \leftrightarrow$ some moderated neutrons will arrive to the counter

Neutrons not // are moderated in the outer annulus of paraffin \rightarrow subsequently captured in the B₂O₃ \rightarrow no count

Long counter (2)

Parameter: displacement of the detector in relation to the entrance surface

Fast neutron detection (E>10 MeV)

The insertion of a heavy metal layer (tungsten) in the moderator extends the response function to GeV because of nuclear reactions of high energy neutrons in the layer (reaction (n,2n)) \rightarrow Wendi-II detector

FHT 762 Wendi-II from Thermo Fisher Scientific

http://www.nndc.bnl.gov/exfor/endf00.jsp

Response of Wendi-II

Neutrons detectors with diodes (1)

- Neutrons detectors based on the used of 2 diodes
- Diode 1 (called neutron diode): covered with an organic medium (plastic: PE,...) doped with ^{10}B (\approx 10¹³/cm³ B atoms) \rightarrow sensitive to neutrons and γ
- Diode 2 (called γ diode): "nude" \rightarrow no sensitive to neutrons and sensitive to γ
- The 2 diodes are side by side and \perp to ionizing radiations (neutrons + γ)

Neutrons detectors with diodes (2)

- Thermal n interact with 1 in 2 ways \rightarrow
 - 1. $H(n,n)p \rightarrow emission of protons$
 - 2. ¹⁰B(n, α)⁷Li \rightarrow emission of α
- The ≠ between signals from diodes 1 et 2 allows to discriminate the contribution due γ from the contribution due to neutrons

Neutrons detectors with diodes (3)

- If the size of the plastic coating is large → important moderation of high energy neutrons → it is possible to study neutrons with high E
- The quantity of ¹⁰B is chosen to obtain a response to thermal neutrons equal to the response to fast neutrons

Neutrons detectors with diodes (4)

- For very high E (E > 10 MEV) \rightarrow addition of Pb \rightarrow reaction (n,2n)
- To improve the precision for a large range of E → system with 3 or 4 diodes with ≠ coatings → multi-elements detector (Saphydose detector)

Saphydose Detector of Saphymo

Detection based on fast neutrons reactions (1)

- Problems for detectors based on moderation → no information on neutrons energy and detection process slow (thermalization by multiple collisions then diffusion of thermal neutrons)
- Solution → direct use of nuclear reactions for fast neutrons → charged reactions products → detection
- Kinetic energy of the reaction product = Q + incident neutron kinetic energy $(E_n) \rightarrow \text{if } E_n \gg Q \rightarrow \text{we obtain neutron energy}$
- Advantage: fast detection process
- Disadvantage: weak cross sections → small efficiency

Detection based on fast neutrons reactions (2)

- Two « types » of detectors based on fast neutrons reactions \rightarrow
- 1. Use of reactions ⁶Li(n, α) or ³He(n,p) \rightarrow same detectors as previously for which the α or proton energy have to be precisely measured
- Use of the elastic diffusion reaction → measure of the recoil energy of the nucleus implied in neutron-nucleus reaction

Detectors based on the elastic diffusion

- To maximize energy transfer → diffusion with light elements → hydrogen, deuterium, helium
- Hydrogen is very popular → recoil proton → detector called "recoil proton detector"
- Elastic diffusion → Q = 0 → the energy of the recoil proton can be equal to the energy of the incident neutron
- Practically \rightarrow
 - Organic scintillators
 - Proportional counter
 - recoil proton telescope

Organic scintillators for neutrons detection (1)

- Organic scintillators contain hydrogen \rightarrow large possible selection \rightarrow use for instance of stilbene allowing a good γ discrimination
- In first approximation \rightarrow all energies given to the proton are equiprobable (in reality $\rightarrow T_c = Ecos^2 \theta_r$) \rightarrow the measured energy spectrum of the protons is considered as rectangular

Organic scintillators for neutrons detection (2)

- Deviations in comparison with a rectangular spectrum:
 - Non-linearity of the light response of the scintillator
 - Wall effect if the scintillator is small in comparison to the protons range
 - Multiple scattering for the incident neutron if the scintillator is not small
 - Scattering with the carbon of the scintillator \rightarrow a neutron can lose 0-28 % of its *E* due to an elastic scattering with C \rightarrow direct effect is weak due to the bad response of scintillator for large *dE/dx* but neutron having a collision with C and having afterwards a collision with H has an *E* that is only 72-100 % of its initial *E*
 - Resolution of the detector (photoelectrons statistics,...)

Organic scintillators for neutrons detection (3)

 $E_p \rightarrow$

Proportional counters for neutrons detection

- Proportional counters containing hydrogen, a gas rich in hydrogen as methane (CH₄) or helium
- Gas \rightarrow small density \rightarrow small efficiency
- Wall effect is important
- The purity of the gas is very important → if impurity → can reach to large deviations
- Use less convenient than scintillators

Recoil proton telescope

- Monoenergy incident neutrons are scattered in a thin film (< than the protons range) rich in H
- As $T_c = Ecos^2 \theta_r \rightarrow$ precise energy for the proton at a given angle \rightarrow energy peak
- Extremely small efficiency (1 event for 10⁵ neutrons)